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The ‘problems’ associated with analysing different kinds of turbulent flow and 
different methods of solution are classified and discussed with reference to how the 
turbulent structure in a flow domain depends on the scale and geometry of the 
domain’s boundary, and on the information provided in the boundary conditions. 
Rapid distortion theory (RDT) is a method, based on linear analysis, for calculating 
‘rapidly changing turbulent’ (RCT) flows under the action of different kinds of 
distortion, such as large-scale velocity gradients, the effects of bounding surfaces, 
body forces, etc. Recent developments of the theory are reviewed, including the 
criteria for its validity, and new solutions allowing for the effects of inhomogeneities 
and boundaries. 

We then consider the contribution of RDT to understanding the fundamental 
problems of ‘slowly changing turbulent’ (SCT) flows, such as why are similar and 
persistent features of the local eddy structure found in different kinds of shear flow, 
and what are the general features of turbulent flows near boundaries. These features, 
which can be defined in terms of certain statistical quantities and flow patterns in 
individual flow realizations, are found to correspond to  the form of particular 
solutions of RDT which change slowly over the time of the distortion. The most 
general features are insensitive to the energy spectrum and to the initial anisotropy 
of the turbulence. A new RDT analysis of the energy spectra E(L) indicates why, in 
shear flows a t  moderate Reynolds number, the turbulence tends to have similar 
forms of spectra for eddies on a local scale, despite the Reynolds number not being 
large enough for the existence of a nonlinear cascade and there being no universal 
forms of spectra for unsheared turbulence; for this situation, the action of shear 
dU,/dx, changes the form of the spectrum, so that, as /? = (tdU,/dx,) increases, 
over an increasing part of the spectrum defined in terms of the integral scale L 
by f ’  >> k L , E ( k )  cc k-2, whatever the form of initial spectrum of E,(k)  (provided 
E ( k )  = o(k-2)  for kL B 1). 

1. Introduction 
Although George Batchelor said that he moved on from his studies of turbulence 

to  other fields of fluid mechanics in the early 1960’s, he has continued to maintain a 
close interest in turbulence research, and his shrewd understanding has always been 
available to those who have consulted him. He summarized his view on ‘ the problems 
of turbulence’ in a sentence or two in his recent opening introduction to the first 
European Turbulence Conference a t  Lyon in 1986 (Comte-Bellot & Mathieu 1987), 
where he predicted that there could be no global theory of turbulence (other than 
that turbulent flows are governed by the Navier-Stokes equations) because all 
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turbulent flows to a greater or lesser extent are determined by their initial and 
boundary conditions. This negative statement does not exclude the fact that there 
are important features that are common to many different types of turbulent flows 
a t  high Reynolds number. This was really a reaffirmation of the ideas so clearly 
explained in Chapter 6 ‘ Universal Equilibrium Theory ’ of Batchelor’s Homogeneous 
Turbulence (1953), and in the discussion of the final stage of decay. 

That book also describes the ‘Rapid Distortion Theory’ (or RDT) developed by 
Batchelor & Proudman (1954) for calculating how turbulence is distorted when it 
passes rapidly through a region of large-scale straining motions. The technique of 
linearized analysis of the vorticity equation, formulating the random Fourier 
transforms of the velocity field and thence the spectra, was applied there to study the 
effect of irrotational strain on initially isotropic homogeneous turbulence, such as 
occurs in wind-tunnel contractions. Although there was no hint that the linear 
methods of RDT might provide some insight into turbulence structure, the paper by 
Pearson (1959), a student in Batchelor’s group, showed how RDT could be applied 
to the distortion of turbulence in shear flows and how it might provide a technique 
for studying the structure of turbulence, especially shear flow. Since then Craya 
(1958), Deissler (1968), Townsend (1976), Jeandel, Brison & Mathieu (1978) and most 
recently Lee, Kim & Moin (1988), have demonstrated by comparison with 
experiments that the linear theory of rapidly distorted flows can be applied to 
analysing the structure of slowly changing turbulent shear flows ! (See also the recent 
review by Savill (1987), which focuses on the connection between RDT and other 
models of turbulence.) 

The first purpose of this paper is to review how RDT has been extended to analyse 
inhomogeneous turbulent flows, including some effects of boundaries, how some of its 
mathematical restrictions have been defined and overcome, and how, following Lee 
et al. (1988) RDT not only provides a technique for calculating the second-order 
moments or spectra of the turbulent velocity field, but also the random realizations 
of the distorted velocity fields from which characteristic eddy structures can be 
deduced. The second purpose is to use these developments in RDT and related 
studies of nonlinear aspects of turbulence to give some new results and insights into 
the spectra of turbulent shear flows and the corresponding physical structure of 
eddies governed by the local mean shear. 

Because turbulent flows become uncorrelated over time and space, and because 
they are intrinsically nonlinear, as is evident from their intermittent structure, one 
might expect that  the structure of turbulence depends only weakly upon the 
boundary and initial conditions. Therefore if asked whether turbulent flows could be 
analysed by the linear theory of rapidly distorted flows, one would think ‘ no ’. Most 
solutions in linear theory are generally directly related to the initial conditions and 
boundary conditions. But the answer may be a qualified ‘yes’, because some linear 
solutions may have certain properties that are strictly independent of these 
conditions (‘ eigensolutions ’) or are weakly dependent after statistical averaging 
(‘statistical eigensolutions ’). 

The finite spatial correlation of turbulence might also suggest that  turbulence is 
dominated by the local mean flow variations (and the presence of nearby surfaces) 
rather than the structure of the whole mean flow profile. This is the approach used 
in the analysis of turbulent flows by models of the statistical moments (whose 
methodology was set out by Lumley 1978). This local approach logically implies that 
there is a common structure found in all turbulent shear flows. By showing that 
certain ratios of Reynolds stress change slowly with time (or distance) Townsend 
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(1976) and Jeandel et al. (1978) argued that these ratios demonstrated the common 
structure. There is also evidence that the coherent structures or characteristic eddies 
obtained by sampling the flow also have certain common features in different kinds 
of fully developed shear flow (Hussain 1986). (These remarks are not related to 
Kolmogorov’s model of a universal structure for the small scales of turbulence when 
the Reynolds number is large enough that the largest straining rates are induced by 
the smallest scales of turbulence.) 

But can a model for the distortion of turbulence by a uniform shear be applicable 
to naturally occurring turbulent shear flows (such as boundary layers, jets and 
wakes) which are significantly inhomogeneous on a scale comparable with that of the 
scale of the eddies ? The answer is also a qualified ‘yes ’. Townsend (1976) and others 
(e.g. Maxey 1982 ; Savill 1987 ; Lee et al. 1988 ; Landahl 1990) have shown that many 
features of turbulent wakes, pipe flows and boundary layers can be described by 
RDT for homogeneous turbulence in a uniform shear. The general validity of this 
approximation can now be examined using the recent extension of RDT to 
inhomogeneous flows. 

An alternative theoretical approach to studying the essential large-scale structure 
of turbulence is to use the techniques of linear stability theory (e.g. Liu 1989) to 
calculate the eigenmodes of the mean velocity field, either the neutral (Lessen 1979) 
or the fastest-growing eigenmodes (Ho & Huerre 1984; Gaster, Kit & Wygnanski 
1985). These discrete eigenmodes are large scale and span the whole flow field and are 
therefore special to that particular turbulent flow. In  the early stages of shear flows 
when there have been only a few nonlinear interactions between the structures (e.g. 
Ho & Huerre 1984) it is found that their amplitude and phase distribution 
correspond approximately to the large-scale features of the nonlinear ‘ coherent 
structures ’ ; but the smaller-scale motions within these structures and smaller-scale 
substructures are not well modelled by these eigenmodes of the whole flow (Hussain 
1986). These large-scale motions, which are characteristic of the whole flow, do not 
in most shear flows account for a significant proportion of the energy and momentum 
of the turbulent motions by comparison with the generic turbulent motions on the 
local scale of the mean shear (e.g. defined by uo/dUl/dx2, where u1 is related to the 
local r.m.s. velocity and Ul(x2) is the mean velocity profile). But the large-scale 
motions can account for a high proportion of the energy and momentum in the 
presence of external forcing of the flow (e.g. by sound acting on a jet) and they 
usually play a significant role in transport of scalars, or particles, and in the 
generation of sound (Hussain 1983). 

I n  this paper we focus on the local-scale motions (but still much larger than any 
smallest-scale isotropic motions) that are determined by the local shear and by the  
presence of nearby boundaries. Our aim is to explore further the concepts of a generic 
or common structure in the energy-containing range of shear-flow turbulence. It is 
suggested that this structure is equivalent to a ‘statistical eigensolution ’ to the linear 
RDT analysis. The characteristic structures formed a t  these local scales are found to 
be the dominant form of coherent structures in mature shear flows (e.g. in wakes 
hundreds of diameters downwind of the obstacle; Mumford 1982; FBrre & Giralt 
1989; Hayakawa & Hussain 1989). 

In  52 we classify and discuss the different kinds of turbulence ‘problems’ to 
indicate where different kinds of turbulence theory might be applicable and what we 
mean by rapid and slowly changing turbulent flows. In $ 3  we review developments 
in RDT, and in $4 we present our new results and a review of shear flows. 
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2. Turbulent flow problems: boundary and initial conditions and methods 
of solution 

2.1. Boundary and initial conditions 
A turbulent flow occurs in a domain 9 if the Reynolds number Re, based on the 
variation of the local mean velocity U0 and the lengthscale L, of 2, is great enough 
that either laminar flows are unstable (at the level of local disturbances advected into 
9 or generated by body forces), or if turbulent flows advected into this domain do 
not decay. 

As in other fluid-mechanical problems, the solution of problems of turbulent flow 
require specification of boundary or initial conditions for the domain and time period 
in question. But unlike deterministic problems in fluid mechanics, in many problems 
in turbulence these boundary conditions on the turbulence are not known sufficiently 
well to define the full turbulent velocity field T{u} in 2 (for example in weather 
forecasting). In  some problems these turbulent boundary conditions do not need to 
be known (e.g. fully developed turbulent flow along a pipe far from the entry is 
independent of the incoming turbulence), and in others these conditions need only be 
known to a limited extent (e.g. up to a certain order of moments), if only limited 
information is required about the mean and turbulent velocity field. However, it is 
not clear in general how much information about the boundary conditions is needed 
to derive the required level of information about T{u}. The essential feature of the 
turbulent velocity field is that any single realization is very sensitive to small changes 
in the initial or boundary conditions, and effectively cannot be computed if the 
conditions are specified too long before or too far away. (This is the problem of 
predictability discussed by Leith 1978 and Tennekes 1988.) 

In most practical problems where a turbulent velocity field has to  be calculated or 
defined in terms of experimental measurements, the usual objective is to estimate 
or measure the ensemble or time mean of the moments (up to order k) denoted by 
K ,  in terms of mean moments (up to  order I), of the velocity field a t  the initial 

moment M, (do) ; . . .) (denoted b Ml ), and, over some part of the bounding surface 
Z(dg); ...) (dedoted by M, . In some cases (e.g. in closed domains, such 
as electromagnetically driven turbulent flows ; Davidson, Hunt & Moros 1988) 

is also determined by the nth moments of applied body forces over the domain, 

and M ,  is needed for a required level of 
accuracy of computation of the kth-order moments in a particular flow 1 Depending 
on the nature of the turbulent flow and depending on the elapsed time of the flow and 
lengthscale of the flow domain, it may be necessary to specify moments of higher 
order than k (where I, m > k) or it may be sufficient to specify moments of lower order 
(where l ,m < k) of the velocity field defined initially and on 3i9, These are not 
academic questions. 

of the wind speed are required a t  a point 
x in a complex flow (e.g. on a hill top or in some fluid-flow machinery) where there 
is information about the turbulence at  x, upstream of that point, and it is known 
that this turbulence is correlated with the turbulence a t  x. What is the connection 
between a t  the upstream points (x,) 1 Is it necessary 
to measure beyond m = 2, and how close should x, be to x for a given level of 
accuracy of predicting 

This is a problem of ‘rapidly changing turbulent’ flow (RCT), where one is just 

-(O) -(O) 

-(K 

M,(*). 
-(O) -(a) How much information about M, 

Suppose the second-order moments 

1,) a t  x and the moments M ,  

for a given value of rn? 
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asking how the turbulence changes. One is not asking fundamental questions about 
the nature and the causes of the structure of the turbulent flow a t  x. 

But the usual ‘problems’ concern flows with slowly changing turbulence (SCT) 
which occur over long periods in large flow domains. Typically such a problem can 
be stated as : given the first moments (i.e. the mean velocity field M I  or M ,  ), and 
the boundary conditions, determine all the moments and probability distribution of 
the velocity field& for k = 1,2, ... (including, for example, the form and magnitude 
of the small-scale universal spectra of turbulence). This is generally regarded as a 
‘fundamental’ question, because it asks what is the structure (as defined by second- 
and higher-order moments) that is independent of the initial state of the turbulence 
and independent of turbulence that is transported into the domain across boundaries. 

A simple classification of turbulent flows in terms of their initial and boundary 
conditions shows how some are rapidly changing and some are slowly changing flows. 
We also see how different regions and features of the same flow can be understood 
and analysed in terms of these different simplifying limits. 

Class I. Closed domains and deterministic boundary conditions 
In  these turbulent flows the boundary surface $9 of the domain 9 of the flow 

consists of rigid stationary or moving surfaces moving with a velocity Ub)(x, t ) ,  with 
a typical scale of U,. Turbulent motion is either caused by non-uniform motion of 
the boundaries (as in a cylinder with a moving piston or oscillating grid in a box, or 
a mixer with an impeller, figure l),  or by the action of body forcesf(x,,t) (as with 
thermal convection on a surface or electromagnetic forcing in furnaces). The body 
forces may be unsteady. After a long time, whether or not there is any initial motion, 
(so that u(O) is irrelevant), the turbulence (and all its statistics z ( u ;  ...)) is solely 
determined by instabilities of the mean motions and the action of body forces. But 
the only non-zero boundary conditions that determine the mean motion and the 
turbulence are the distributions of the mean velocity on $9 and/or force f throughout 
9. 

Class 11. Open domains and statistical boundary conditions 
I n  this class of turbulent flows, some of the bounding surface of the flow 

domain 9 lies within the fluid and, in general, there is some motion across 93, i.e. 
u(@.n(@ + 0, where ncro) is the outward normal to W. There are two main subclasses 
depending on the nature of the flow in the region 8 outside 9. 

Class 11.1 No turbulence in 8. In  this class the flow entering 9, with characteristic 
mean velocity U,, is not turbulent, but turbulence is generated within 9 by 
instabilities if Re is large enough (figure 2a). This might be a steady uniform flow 
approaching an aerofoil, or entering a pipe. This class is not quite similar to I because 
in some flows the moments of turbulence are not only determined by the mean 
motion entering 9, and the mean velocity of the boundaries, but also by conditions 
on the turbulence where the flow leaves 93, for example where turbulent flows 
separate from sharp edges. 

Class 11.2.1 SigniJicant meanfEow from 8 through 9. In this case, turbulence generated 
in d (with typical magnitude u,) is transported into the region 9 by the mean 
velocity field U ( x , t )  with typical magnitude U,. This implies that there is a 
component of the mean flow normal to $9 which is significantly greater than the 
turbulence, i.e. Uon‘”) =l= 0 and U, cosa‘”) > u,, where a(ro) is the angle between Uand 
dro) (see figure 2b). 

-(O) -(s) 

Class 11.2 Turbulence in 8. This class must be divided into two subclasses. 
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FIGURE 1 .  Examples of closed domain and deterministic boundary conditions. (a) Forced mixing 
with an impeller or body forces (electromagnetic or buoyancy) ; ( b )  a cylinder with a moving piston. 

FIGURE 2. Open domains and statistical boundary conditions. (a)  Flow entering 9 is not turbulent ; 
turbulence generated within 9. (b )  Turbulence in 8 advected into 9 by mean flow across 9. (c) 
Random motion across bounding surface 9 advects turbulence into 9. 

The integral lengthscale of the turbulence transported into 9 is L,, and thence the 
integral (‘ Lagrangian ’ or ‘ turn-over ’) timescale TL can be estimated. For most well- 
developed high-Reynolds-number turbulent flows TL - Lx/uo (e.g. Tennekes & 
Lumley 1971). If L, is the distance along the streamlines of the mean flow through 
9, the travel time of a turbulent eddy is T9 - L,/U,. The ratio T9/TL can be used to  
divide these kinds of turbulent flows, through ‘open’ control surfaces, into flows with 
‘rapidly changing turbulence ’ when T,/TL - L,  uo/(L, U,) 4 1,  and ‘slowly changing 
turbulence’ when T,/TL - L,u,/(L, U,) 2 1. 

In most turbulent flows L, and U, decrease rapidly near rigid surfaces so the ratio 
T,/T, may be small in the interior of the flow and large near rigid surfaces. Since this 
ratio is proportional to L,, the choice of the size of the flow domain also determines 
the kind of turbulent problem, and whether i t  is an RCT or an SCT problem. 

There are many important examples of turbulent flows which have been studied 
intensively both theoretically and experimentally in the framework of rapidly 
changing turbulent flows (RCT), i.e. studying the changes of the turbulence in terms 
of the distortion they undergo in 9 and the nature of the turbulence being advected 
into 9. These include the distortion of turbulence in a wind-tunnel contraction 
(Batchelor & Proudman 1954; Tucker & Reynolds 1968; Goldstein & Durbin 1980), 
turbulent flows impinging onto aerofoils, flat plates (Goldstein & Atassi 1976; Thomas 
& Hancock 1977; Hunt & Graham 1978), turbulence passing through wire gauzes, 
and in compression, shocks, flames and other entropic discontinuities (Taylor & 
Batchelor 1949; Batchelor 1955; Goldstein 1978; Dussage & Gaviglio 1981), 
turbulent boundary-layer flows in large pressure gradients or over surface 
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perturbations, such as hills (Britter, Hunt & Richards 1981 ; Mason & King 1985; 
Zeman & Jensen 1987; Hunt, Newley & Weng 1989). For the latter case of distorted 
boundary layers over rigid surfaces (or ‘walls’) several studies have now shown how 
the changes in the structure of the turbulence are quite different near the wall where 
T,/TL 2 1, and in the interior of the flow where T,/TL 5 1. 

Class 11.2.2 No signi$cant meanJlow through 9. In these flows the turbulence in & 
interacts with or drives the turbulent flow in 9 largely by means of random motions 
across the bounding surface W (figure 2c) .  The turbulence in 9 differs from that in 
d because of some distorting effect. It is assumed that any mean flow across W is weak 
relative to the turbulence, i.e. Uo cos a ,< uo. Where the mean shear in 9 is small, then 
it may be useful to define 9 in a coordinate system moving with the local mean flow. 

These regions of distorted turbulent flows occur a t  the outer edge of boundary 
layers (Phillips 1955), in turbulent flows of liquids near a free surface (Hunt 1984) or 
in stratified flows near density interfaces (Carruthers & Hunt 1986), or in laboratory 
grid turbulence near a moving wall (Uzkan & Reynolds 1967; Thomas & Hancock 
1977), or when external turbulence interacts with the boundary layer on a surface. 
In most of these cases the changes to the turbulence generated within 9 can be 
comparable with the turbulence in 8. 

When a discontinuity is imposed on a turbulent flow, such as a rigid surface or a 
density discontinuity, and it is imposed instantaneously, its effects typically extends 
a distance of order of the integral scale of the turbulence L,. Therefore these regions 
52 where the changes occur extend a distance of order of L, from the discontinuities. 
In some cases where this distance is small compared with the overall scale of the 
external flow h (as in the convective boundary layer where the thickness h is about 
5L,), the structure of the turbulence in 9 can approximately be considered 
independently of the turbulence in the whole flow. In other cases this approximation 
may not be appropriate (as for example in the flow at  the top of an unstratified 
turbulent boundary layer). 

For flow regions of this form it follows that the timescale T, for an eddy to traverse 
the flow region is typically of order of Lx/uo, which is of the same order as the natural 
timescale of the turbulence TL. Therefore, as an eddy impacts on the discontinuity, 
it is virtually a ‘rapid ’ effect. The advantage of considering small subdomains of this 
sort in flows is that it may be possible to consider the external turbulence in d without 
considering 9, and then to consider how the local structure of turbulence in 9 is 
determined by the external turbulence for given kinds of boundary conditions in 9. 
This decoupling has made it possible to find how different boundary conditions affect 
different types of turbulent flow in 8, as in the examples given above. 

Class 111. Initial conditions and changing boundary conditions 
In turbulence with closed domains and deterministic boundary conditions (I) and 

with open domains and statistical boundary conditions (11), the turbulence in 9 is 
determined by boundary conditions (e.g. M ,  ) near the bounding surface a. These 
boundary conditions are assumed to persist for long enough, or not to change 
rapidly, so that the initial conditions of turbulence at t = 0 or the rate of change of 
its structure, do not have to  be considered. In other words we ignore the dependence 
on Ml . However, another class of problems specifically concerns how turbulence 
changes over a time, say T,, in different flows, given initial boundary conditions ML . 
We classify this as the third kind of problem. The flow domain in question may be 
closed or open, and may or may not have a mean flow across a. 

-(a) 

-(O) 

-(O) 

17 FLM 212 
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In  many theoretical studies of the distortion of turbulent flows, in any of these 
three classes, i t  is convenient to consider first of all a well-posed mathematical 
problem of the time evolution of turbulent flows, with various different properties, 
under the action of different kinds of distortion, e.g. gradients of the mean velocity, 
a boundary being imposed or moved, the effect of a density gradient, etc. Then the 
results of the analysis, or computation, or experiment, can be applied to 
understanding or calculating the steady-flow problems of Class I or 11. Usually this 
application is not exact, and involves heuristic approximations. But in some cases 
there is a formal mathematical connection, mainly between the flows of Classes 111 
and 11.2.1. 

The time evolution problem can be analysed formally by RDT over a time period 
T9 which is less than the turbulence timescale TL. For a longer period, approximations 
to RDT, or other methods, have to be used. 

2.2. Methods of solution 
Most turbulence problems would be regarded as solved when the functional 
relationship is known between the ensemble average of the kth-order multi-point 
moments of the velocity z, in the flow domain $3, and the lth- and mth-order 
ensemble average moments of the velocity field on the boundary and a t  some initial 
moment. The methods that have been developed for obtaining such solutions can be 
divided into two distinct classes, which involve quite different equations, 
approximations and boundary conditions. The first class involves computational 
methods and approximations that are also used in studies of non-turbulent fluid 
flows, whereas the methods in the second of the classes are particular to  turbulent 
flows and depend in large part on the assumption that turbulent flows have a 
common ‘structure’, a question we examine in detail in 994 and 5. 

2.2.1. Modelling each realization First the unsteady equations are approximated, 
for example, by discretization (as in direct numerical simulation), by filtering and 
discretization (as in large-eddy simulations), or by linearizations (as in rapid 
distortion theory). 

Second, the approximate equations are solved subject to the boundary conditions 
at each realization. (In the case of RDT this step may be analytical.) 

Third, using the solution for the ensemble of realizations the kth-order multipoint- 
time moments are computed or calculated. (In the case of RDT these can sometimes 
be calculated analytically.) 

Where the results are computed directly, large numbers of realizations (typically 
100) have to be computed to obtain even second-order, two-point moments. If the 
mean flow is steady, the moments can be derived from averages over time, and so 
computations should extend over many integral timescales (L,/u,) ; the higher the 
order of moments to be computed, the longer is the time required. 

2.2.2. Modelling ensembles of realizations Quite different approximat’e procedures 
have been developed for use in practical calculations of turbulent flows, where most>ly 
only first and second moments of the velocity field at one point are required. The 
solutions to the partial differential equations resulting from these methods usually 
require extensive and careful computation. 

First the equation for kth-order moments (one-point or multi-point) are derived 
without approximation from the Navier-Stokes equation, and then the ensemble 
averages of the equations are taken (usually after separating the velocity field into 
mean, U(x,  t ) ,  and fluctuating u(x ,  t ) ,  components). 

There is no rigorous procedure for using this infinite set of equations to solve for 
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M ( k ) ,  because the sequence of equations may not converge. These equations have to 
be approximated to be useful and to obtain a computationally soluble closed system 
of equations. The practitioners of approximate methods in turbulence have slowly 
converged onto the use of a few standard methods, ranging from the simplest, 
involving no extra equations (such as mixing length), to second- and third-order 
models involving ten or more extra equations. For inhomogeneous flows, one-point 
moments are reviewed by Launder & Spalding (1972) and Lumley (1978). For 
homogeneous turbulence, model equations for two-point, second- and third-order 
moments and spectra have been developed for isotropic and non-isotropic turbulence 
by methods ranging from the most fundamental, such as Kraichnan’s DIA (based on 
truncating formal expansions: see Leslie 1973) to those based on physical 
assumptions about third- and fourth-order correlations such as the ‘eddy damped 
quasi-normal Markovian ’ approximation, Lesieur 1987). 

The various approximations used in the practical one-point models would, in 
principle, only be valid in all turbulent flows if they all had a similar ‘ structure ’ (for 
example in the relation between ii& and w). In fact, many features of the 
turbulence structure are different, e.g. in the form of their spectra, yet these models, 
which all incorporate empirical coefficients, can be used approximately in a wide 
variety of complex, inhomogeneous turbulent flows (provided the models are used in 
the way they are designed to be used; e.g. the lowest-order models are essentially 
designed for computing the mean flow and not the turbulence structure). Some 
reasons for this approximate success are discussed in later sections. 

These approximate moment equations can be solved only if suitable boundary 
conditions exist for the moments. If the equations are to be solved for turbulent flows 
a t  high Reynolds number, then boundary conditions (e.g. a t  a rigid surface z = 0), are 
required for all the moments of the derivatives as x/L, + 0, where L, is a relevant 
scale of motion of the turbulence (e.g. an integral scale for one-point moments or 
distance between points in two-point moments). 

Recent computational and experimental research has shown how the decreasing 
magnitude of certain lengthscales of turbulence a t  a rigid surface mean that the 
turbulence develops its own local structure a t  a rigid surface. In this limit, where the 
dynamics lead to a local structure, it is found that there are universal boundary 
conditions for second moments of the turbulence. (Townsend 1961 used this 
approach to show how the logarithmic law of the wall could be derived from the 
turbulent energy equation.) 

Where the Reynolds number is too low, or the locally generated turbulence does 
not dominate the local structure (as, for example, in separated flow a t  a surface 
downwind of a fence, Ruderich & Fernholz 1986) there is no universal local structure. 
However, to obtain solutions to the moment equations, various approximate and 
empirical boundary conditions have been proposed for the moments of the velocity 
and their derivatives; these have to ensure that the no-slip conditions are satisfied 
and that the set of momentum equations can be solved efficiently and uniquely ! (e.g. 
Rodi 1988). The detailed testing of these models, using direct numerical simulations 
(reviewed by Hunt 1988) is helping to establish whether and how these methods of 
solution can be used reliably near all surfaces. This is necessary since it appears that 
turbulence does not have a universal structure for different flows over the same kind 
of surface (as in the case of separated flows or where the turbulence is driven by body 
forces). 
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3. Mathematical developments of RDT 
3.1, Linearization 

Consider the random velocity pressure and vorticity fields u*(x ,  t ) , p * ( x ,  t )  w*(x, t )  
divided into the ensemble mean and fluctuating components, u* = U(x, t )  + u, 
p* = p(P+p)  and w* = O + w .  The ensemble means of u , p  and w are zero. We now 
review the estimation of the errors associated with linearization, both for the large 
energy-containing scales of the turbulence with a typical r.m.s. velocity uo = ($a);, 
and integral scale L,, and for small eddies with velocity scale u(Z) and lengthscale 1. 
The typical values of the mean velocity, and its change over a typical lengthscale 
of the mean flow in 9, are U, and AU, respectively. 

In this paper the discussion of RDT is restricted to incompressible flows with 
uniform density and no body forces. But in fact RDT is a useful and easy technique 
for estimating how such effects change turbulent flows (e.g. Moffatt 1967 ; Komori 
et al. 1983). 

The governing equations for u and 0 are 

aui au. ail ,  -+U.L+u . - -=- -  + vV2ui - (NL),*, 
at 3 axj 2 axj ax% 

~ + U j - + u k - - - - w k - - Q , ~  awi aQi aui au. = uV2wi+(NL),(, 

at axj ax, ax, ax, 

(3.1 a)  

(3.1 b)  

- - - v  
(i) (ii) (iii) (iv) 

where aui/axi = 0, wi = 8 i5k auk/ax:,, ( 3 . 1 ~ )  

SO that awk/axk = 0. 
The physical interpretation of the terms in (3.lb) has been given by various 

authors (e.g. Tennekes & Lumley 1971 ; Hunt 1978). The terms (i) and (iii) for the 
advection and stretching of w by the mean flow are important in all flows with a 
mean velocity. The fourth term (iv) is significant where the mean vorticity exists and 
can be distorted by velocity fluctuations. The second term (ii) caused by the 
advection of the mean vorticity by the turbulence is only significant if the mean 
vorticity is non-uniform (Gartshore, Durbin & Hunt 1983). 

The nonlinear terms are 

in ( 3 . 1 ~ )  

and (3.1 b)  
_ _ _ _ _  

awi aui ukawi ojaui (NL) = -u~-+w -+--- 
*I ax, Qxj ax, axj 

(3.2a) 

(3.2h) 

The first term is advection of o by the fluctuating vorticity and the second is the 
stretching of w by the fluctuating velocity. 

In  RDT the linearized velocity and/or vorticity equations (3.1) are primarily used 
to calculate the two-point moment of the velocity field, Rij(r)  = u,(x) uj (x ,  r ) ,  or the 
two-point structure function such as ARii(x, r )  = (u,(x) -ui(x, r)' = 2 ( 2 - R i i ( x ,  r ) ) .  
The conditions for linearization of (3.1 b)  are quite different if w is calculated for the 
purpose of calculating u and R,,, as compared with calculating 3. It is necessary 
to define which scale of the vorticity field contributes to the moments of the velocity 
field. 

Using the Biot-Savart integral (Batchelor 1967, chap. 2), ARti (x , r )  can be 
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expressed as an integral of wk(r’) w,(r”) which, for high-Reynolds-number turbulence, 
can be estimated in terms of the rate of dissipation per unit mass, E .  When 

I(r’-r’’)l < L,, olc(r’)w,(r”) - €it-:, 

where B = I(r’-r’’)l, and thence, if 111 = 1, 

AR,,(x, r )  - 1; &-%dB - E%. (3.3) 

This integral shows that, although the vorticity correlation is largest a t  very small 
separations of i ,  the contribution to AR,, from smaller-scale vorticity is comparable 
with that from lengthscales of the vorticity centred on 1. 

The contributions to eddies on scale 1 or ARii(l) from vorticity of different 
lengthscales could come from vortex sheets separated by L ,  or from smooth 
distributions of vorticity on a scale I ,  or from both. Flow visualizations and 
measurements using conditional sampling (e.g. Hussain 1986), the analyses of 
Moffatt (1984) and Gilbert (1988), and the numerical simulations of two-dimensional 
high-Reynolds-number vortices by Dritschel (1989) suggest that  both forms exist 
simultaneously because each type of vorticity distribution eventually develops into 
the other type. However, it does appear that velocity fluctuations on a scale 1 are 
primarily associated with smoothly distributed vorticity regions with lengthscale 1, 
so that nonlinear terms like o j 3 u i / a x j  can be estimated as being of order u2(1)/12. Of 
course if (3.1 b )  was used to compute the mean-square vorticity, the nonlinear terms 
would be of order and greater by a factor of 0(Gl2/u2) = O(Re) if 1 - L (Tennekes 
& Lumley 1971). 

The effect of the nonlinear terms in (3.lb) not only has to be estimated over the 
appropriate lengthscale of the velocity field ( I ) ,  but also over the period Tg in which 
the mean distortion is applied. Since these terms are randomly varying in time and 
space, their effect is reduced. The second of the nonlinear terms in (3.2b) is caused by 
the stretching of the fluctuating vorticity w by the fluctuating velocity, u,  and can 
be estimated for high-Reynolds-number turbulence, using the fact that, on a 
lengthscale 1, aui/i3xj is of order cil-3. Now we can estimate the relative changes in o 
produced, in a time T,, by the linear (AuLin) and nonlinear terms (AWN,) compared 
with the initial vorticity (w,) .  Thus AoLin/uO - (AUIL,) T,, AoNL/oo - (u(Z)/Z) Tg. 
Therefore, for the purposes of estimating moments of u(1) on a scale I, the criterion 
for neglecting the nonlinear vortex stretching term u, aui/axj is 

This criterion can also be expressed in terms of the characteristic velocity of the 
energy-containing eddies u,. Since, from the inertial-range scaling u(1) - uo(Z/Lx)i, 
(3.4) becomes 

Thus the two dimensionless parameters which characterize the energy-containing 
eddies (1 - L,) of a rapidly distorted flow are : the total strain p = T, AUfL, and the 
relative strain rate 

Y * = (AU/L,) TL where TL = Lx/uo. 

The criterion of (3.5) implies that, if the strain rate is weak, i.e. Y *  < 1, 

(p/9’*) + 1,  or T, 4 TL. (3.7 a )  
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p ly " *  or Tg/TL are arbitrary (3.7 b )  

(see Lee et al. 1988). If (3.5) is satisfied the effects of random straining with large 
timescales are also negligible. Equation (3.5) is the essential criterion for the validity 
of RDT calculations of second moments of the velocity field for rapidly changing 
turbulent flow (RCT): i t  indicates that the linearization is justifiable either if the 
strain rate is large enough or if the period of distortion TD is short enough. It also 
shows that the neglect of nonlinear processes for the energy-containing eddies (where 
I - L z )  is better justified than for smaller-scale eddies (where 1 + Lz) .  (For low 
Reynolds number turbulence this caveat is not necessary.) Usually the mean 
straining motion selectively amplifies the turbulent vorticity w in one or two 
directions, and may even reduce w in other directions. Therefore (3.7a, b )  are the 
criteria for the linear analysis to describe the growth of the components of vorticity 
and velocity with maximum magnitudes. 

In  deriving (3.5) only the nonlinear random stretching is considered, which in some 
cases can amplify the anistropy of w produced by the linear distortion (Lee 1985; 
Kida & Hunt 1989). However, an important effect of the nonlinear terms is the 
random rotation of vortex lines by the turbulence, leading to significant transfer of 
vorticity into directions away from those of maximum straining. Thus, linear 
analysis can under- or overestimate the anisotropy caused by mean strain. Therefore 
the criterion (3.5) for the neglect of nonlinear terms can only be applied to all 
vorticity and velocity components if i t  is modified to allow for the reduced straining 
in some directions and the nonlinear rotation effect. So (3.5) becomes 

where B(T,) = exp ((Amin--AmaX) T,), and A,,, and Amin are the moduli of the 
maximum and minimum values of principal strains of aU,/ax,. This means that the 
strain parameter criterion (3.7b) is changed to 

Y * B % l .  (3.9) 

So for strong enough isotropic compressive strains, where i3Ui/ax, oc 8 ,  and 8 = 1, 
and if (3.75) is satisfied, the nonlinear terms can be neglected for all time (Batchelor 
1955). If, for any non-isotropic strain, the effective angle of rotation 8(T,) increases 
with time, then the nonlinear terms eventually become significant, whatever the 
initial strength of the strain. (We return to this in $4.) 

3.2. The statistical input and output to RDT 
It is not possible in general to calculate, even using linear RDT, the changes of u or 
w over the domain 9 for an arbitrary input distribution u,(x, t )  whether it is defined 
initially and/or over the boundary B. But, by representing uoi as a series, or integrals 
of orthogonal functions $$I, where the random coefficients 6'2) are defined by the 
input distribution, it is possible to calculate the changes in 9 of u ( x , t )  (and its 
moments) for a wide range of statistical distributions of u,. 

(3.10) 

where the orthogonal functions $ $ ) ( x ,  t )  can, in principle, be deduced from (laborious) 
measurements or computations of two-point moment of uoi (Lumley 1965). 

In  general 
U o i ( X ,  4 = c 6'2) @ ( x ,  t ) ,  
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When the ‘input ’ velocity field is homogeneous, Fourier integrals are used in place 
of the sum (3.10) and the functions $o(x) are known, so that 

uoi(x, t )  = S,,(K, t)eirr.xdK. (3.1 1 a )  

The correlations between these random Fourier transforms Soi are defined by the 
orthogonality relation 

XO*i(K)Soi(K’)  = f q K - K ’ )  CPOi5(K), (3 . l lb )  

where O o i , ( ~ )  is the energy spectrum tensor, and 

s 

& R,,,(x, x + r )  e-iK.r dr = O o i i ( ~ ) .  (3.11 c )  

Changes to ui can be expressed as the product of a non-random ‘transfer function ’ 
Qik(ic, x, t )  and the original Fourier transform 

ui(x, t )  = Q i j ( ~ ,  x, t )  Soj (K,  t )  d ~ ,  (3.12a) 

where a t  t = 0, Qij = 8iieir.x, but for t > 0, Qi5 is determined by the dynamical 
equations. Similar transfer functions can be defined for pressure, n,, in terms of the 
initial velocity S,, and for vorticity, qim, in terms of the Fourier transform of the 
initial vorticity. Note that S,, Qi5 and qim are related by 

s, 

(3.12b) 

From (3.11) and (3.12) the changed two-point moments are determined by the 
transfer functions and the original spectrum : 

Ri j (x ,  x + r )  = Qfm Qil @Oml d K .  i, (3.13) 

All the other one- and two-point second moments and spectra can be derived from 
(3.13) (e.g. Hunt 1973). 

In  most computations of rapid distortion theory, it has been assumed that the 
input turbulence is isotropic (and incompressible), so that GOi5(tc) could be expressed 
simply and uniquely as 

(3.14a) E ( k )  Goi5 = - ( k2aii - Ki K,) , 
4K 

where k2 = K~ K,  and E(k)  is the energy spectrum, whose integral is 

IOmE(k)dk = +uiui. (3.14b) 

To investigate how distorted homogeneous turbulence depends on its initial 
conditions, either the spectrum E ( k )  or the anisotropy are varied. For axisymmetric 
turbulence, aOi5 is defined by Batchelor (1953); for isotropic turbulence in two- 
dimensions, (3.14) can be applied to two dimensions only. In  axisymmetric 
turbulence 

where (3.15) 
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As a simple hypothesis it is usually further assumed that B, is zero and B, is a 
function of k only (Sreenivasan & Narasimha 1978 ; Maxey 1982). 

Note that where the initial state of the turbulence is assumed to  be homogeneous, 
the general representation (3.13) does not necessarily imply that the turbulence 
remains homogeneous while being distorted. I n  many studies of RDT from Batchelor 
& Proudman (1954) onwards, it has been assumed that the turbulence remains 
homogeneous during the distortion. In that case the transfer functions Qin and qin 
can be expressed (in a suitable moving frame) as 

{&in(K;~,t),qip(K;X,t), f l n ( K ; x ,  t )>  = {A,,(~jt),aip(X,t), ~n(X,t)>e".", ( 3 . 1 6 ~ )  

where a $ p  = - ~ ~ j k ~ n r n p k r n  XjAk,lk2 (3.16b) 

and x is the local deformed wavenumber defined by the constraint that wave fronts 
are conserved, i.e. 

dx,/dt + X I  aU,/axi = 0, ( 3 . 1 6 ~ )  

d/dt being evaluated in the moving frame, and X(t = 0) = K. In  these homogeneous 
distortions, a local energy spectrum tensor can be derived from the transfer function, 
viz. 

@$,(XI = A,*,Ajrn(X, t)  @Onrn(K). (3.17) 

In  many cases the turbulence is homogeneous in only one direction (say x3)  and in 
time, and then (3.16) can be generalized (following Phillips 1955 and Hunt 1973) to 

where 

(3.18) 

In  this case spectra can be defined for wavenumber x3 or frequency o. 

3.3. Methods of solution 
The essential point about RDT is that  i t  is a method for calculating what happens 
to an initial velocity distribution using the linearized equations of motion under 
particular kinds of distortion, such as occur in the boundary-value problems 
classified in $2 as 11.1 and 111. In some cases, RDT provides a practical method of 
calculating turbulent flows a t  the appropriate level of moments (e.g. second order, 
two point) and appropriate accuracy. It is not a method of explaining how any 
turbulent flow arises, nor in general, a method of calculating the flow everywhere in 
a flow domain. However, i t  can be used as a diagnostic tool for studying certain 
aspects of the mechanics of turbulent flows. Many different kinds of distortion and 
initial condition have been used in a wide range of practical and fundamental studies. 
Different methods of solution can usefully be classified according to  whether the 
distortions are homogeneous or inhomogeneous. 
3.3.1 Homogeneous distortion (without body forces) I n  this case the turbulent velocity 
and vorticity fields are homogeneous and can be represented by a three-dimensional 
Fourier transform throughout the distortion, as described by (3.16). This form of 
solution is appropriate if the rate of strain of the mean velocity field aUi/axk is 
uniform, so that the mean velocity can be expressed as Ui = xjaij. 

(i) Using the linearized vorticity equation (3.1 b) and substituting ( 3 . 1 6 ~ )  and 
13.166) leads to 

(3.19) 
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which reduces to  an equation for the vorticity tensor: 

and xl  is given by ( 3 . 1 6 ~ ) .  In  general aU,/ax, and Q, = elnnaU,/axm are specified as 
functions of time. Also a t  t = 0, a,, = Sin.  

For irrotational mean flows, where Q, = 0, Pik is independent of the wavenumber 
vector x l ,  and the change in a,,(t) depends solely on the integral of the strain rate 
[(aU,/ax,)dt. Also in this case the vorticity tensor pi, = a,,, which is just the 
negative of the tensor given by ( 3 . 1 6 ~ )  for the rate of change of the wavenumber i.e. 
-aki = -aik.  But for rotational mean flows, the change in a,, is dependent on the 
wavenumber and on the history of the changes in aUi/ax,. There is no simple relation 
between Pik and how xi changes. Specific examples of sequences of irrotational and 
rotational strains were calculated by Townsend (1980), and Sreenivasan (1985). 

Unique solutions for a,,, and thence A,, and X i  can be expressed as 

ain(X,t) = Cj(t)ajn(x>O)j xi = ~jsj,, 
where the deformation tensors TI,$,, can be formally expressed as integrals of the 
/?ik(t) and au(t) (e.g. Kida & Hunt 1989). 

Once A, ,  and X i  are found, the new three-dimensional spectra and cross- 
correlations can be derived from (3.12) and (3.16). Usually (3.20b) is only used for 
irrotational distortions, but it has been used for combinations of irrotational and 
rotational distortions by Kida & Hunt (1989). 

(ii) The alternative approach (developed by Craya 1958; Deissler 1968 and 
Townsend 1976) to the calculation of the transfer function is to use the linearized 
momentum equations directly. For a locally homogeneous solution, the transfer 

d 
function A,, satisfies 

-A,, = -A,, aij - z x i  p , .  (3.21 a)  dt 

Using continuity, xjA, ,  = 0, and ( 3 . 1 6 ~ )  for the change of x,,$,  can be expressed in 
terms of A,,  as 

$n = i [ X I A j n  ",,-'in d ~ t l d t l l ~ ~ .  (3.21 b)  

. "  

Therefore dA,,/dt = pikAk, ,  where 

P i k  = - [ a i k - 2 x i x j a j k / x 2 1  and = O )  = Skn* (3.22) 

This solution shows how, even in this linear theory the pressure gradient generates 
fluctuating motions in directions perpendicular to the mean velocity U of the 
straining motion, and tends to reduce the motion in the direction of mean strain. 
From (3.22) Ai,  can be defined explicitly for weak distortion, i.e. tllVUII 4 1 ,  (Crow 
1968) viz. 

= (&ik + tpik(t = O))  (3.23) 

Even for finite distortions, the equations can be integrated analytically in cases 
where aik is constant in time. Simple results are available for pure shear, pure 
rotation, and irrotational distortion (e.g. Townsend 1970 ; Cambon & Jacquin 1989). 

3.2.3. Inhomogeneous distortions Now consider the theory when the integral 
lengthscale of the initial homogeneous turbulence L,  is comparable with the 
lengthscale L, over which the mean velocity gradients (VU)  vary, or comparable 
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with the distance n to a boundary which makes the turbulence inhomogeneous (such 
as a density discontinuity or a boundary with another kind of velocity field), i.e. 

L, > L, - IIVUll/IIVVUll or L, > n. 

New solutions have to be found for the velocity, vorticity and pressure transfer 
functions (Qin ,  qin, LTn) (IC, x ,  t ) .  So far general methods have been found for irrotational 
flows, but for rotational mean flows where the turbulence is inhomogeneous, solutions 
have been found only for a few classes of mean flow, initial turbulence and boundary 
conditions. A feature of all inhomogeneous problems is that the boundary and initial 
conditions have a significant effect on the solution and have to be carefully specified. 

Irrotational meanjow. In  these problems the distortion of a weak random vorticity 
field by a strong irrotational mean straining flow is calculated. There may also be a 
significant (not necessarily weak) irrotational fluctuating velocity field. 

( a )  The vorticity method Since the mean vorticity is zero, i.e. 51 = V A U = 0, the 
linearized vorticity equation (3.1 b )  reduces to 

aw/at+(U.V)w = (0.V) u, (3.24) 

and u can be solved from w = V Au and V - u  = 0. 
For the solution for the fluctuating vorticity field in the flow domain 9, the only 

boundary conditions required are its initial vorticity wo(x,  t )  a t  t = to, and its value 
on 9, wa(x,, t ) ,  where the mean velocity is entering the flow domain, i.e. U-n,  < 0. 
The fluctuating velocity field is similarly specified : 

24 = u&, to) ( 3 . 2 5 ~ )  

and u = u,(x,t) on x8 (3.25 6 )  

(where u, may be an implicit function of u in 9 and of u in 8 outside A9 ). Of course 
on a rigid bounding surface, BS, 

u, .n=O on x = x g s .  (3.25 c )  

First w is solved in terms of its initial or boundary vorticity (both denoted here by 
wo)  and the mean velocity field, using Cauchy’s theorem. Let x be the position of a 
fluid element a t  time t and a ( x )  be its position earlier a t  time to (or t, if on 9 )  when 
it  is first advected by the mean flow. By considering corresponding small changes in 
x and a,  which is equivalent to considering the distortions of a line element 
(Batchelor 1967, Chap. 6), it follows that the solution to  (3.24) is 

wi(x,  t )  = wor(a, to)  axc/aa,. (3.26 a )  

For two-dimensional and axisymmetric flows, the tensor axi/aa, can be derived 
explicitly in terms of derivatives of the stream function (or Stokes stream function) 
$ and the drift function T ( x )  or time of flight from a plane xi = X along a mean 
streamline ?,b = const; 

dx’ 
($ = const) 

(Hunt 1973 ; Durbin 1981). 
Once o is solved, u can be calculated by standard kinematical methods (Batchelor 

1967, Chap. 3; Hunt 1973). For a turbulent flow, i t  follows from ( 3 . 1 6 ~ )  and ( 3 . 2 6 ~ )  
that the vorticity transfer function ’ is given simply by 

q i f l ( K ,  x ,  t )  = (axi/aar) ajfl ei(K.a), (3.26 b )  
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so that its distortion is independent of wavenumber. But the distortion of the 
velocity transfer function Q t n ( ~ ,  x, t ) ,  which is derived from qin using (3.12b) and a 
Biot-Savart integration, depends on the wavenumber K. Since Qrn also depends on 
the velocity boundary condition (3.25), it  usually can only be derived analytically 
using asymptotic solutions, for very large or very small wavenumbers (i.e. kL, + 1 
or kLg % 1). Thence velocity (and pressure) correlations can be calculated for 
small or large scales of turbulence relative to L, (i.e. L, < L, or L, 9 Lg).  For these 
limiting cases, the turbulence can be computed for quite complex flows, such as 
round circular cylinders, rectangular prisms, porous obstacles or spheres, etc. 
(Computations of the linear equation or Biot-Savart integrals are possible, in 
principle, for all K, but this approach has not yet been developed.) 

A number of experiments performed to test these predictions have shown firstly 
that the changes in these limiting solutions as LJLg changes are similar to the 
changes in the measured variances and correlations of the turbulence and the 
pressure fluctuations. Secondly, spectra measured a t  high and low wavenumbers 
correspond closely to the asymptotic limits (Graham 1976 ; Britter, Hunt & Mumford 
1979; Durbin & Hunt 1980; Durbin 1981; Kawai 1989). 

(b)  The veZocity method In  an important development in RDT, Goldstein (1978) 
showed that in an irrotational distortion the velocity field u could be computed 
directly without the necessity of first computing the vorticity field. In his analysis he 
rediscovered Weber’s (1868) result that the velocity of a fluid element a t  x a t  time 
t could be expressed as the sum of an irrotational component Vq5 and a rotational 
component uR directly related to the velocity of the same element of a a t  time to, 
using the inverse of the same material deformation tensor as used for the change of 
vorticity, i.e. 

u ~ x ,  t )  = uEi+- (x, t ) ,  where u,,(x, t )  = A u j ( a ,  to)  (3.27a, b) 

and q5(x,t) is a velocity potential which is zero when t = to. To calculate q5 it is only 
necessary to satisfy continuity ( V - u  = 0) by solving one Poisson equation: 

vq5 = -V’Ug, ( 3 . 2 7 ~ )  

subject to (uR+Vq5) satisfying the boundary conditions (3.25). (By comparison the 
method (a )  requires in principle four supplementary Poisson-type equations to be 
solved.) 

The result (3.27) can be most easily understood by considering the change of u - d x  
of a line element as it moves from a to x, using Kelvin’s theorem (Hunt 1987). 
Consequently (3.27) is also valid for barotropic, compressible flows. 

This method was used to calculate the distortion of turbulence in a two- 
dimensional contracting duct (such as an aeroengine compressor duct) where the 
turbulence scale L, is comparable with the scale of the duct, so that the eddies impact 
on its walls, as well as being strong distorted (Goldstein & Durbin 1980). 

Rotational meanf iw .  An essential feature of RDT solutions for homogeneous or 
inhomogeneous flows is that no assumptions are made about the variation with time 
of the transfer function Qin or qrn in ( K ,  x, t ) .  Therefore in some parts of the flow there 
may be amplification and in other parts reduction of different components of the 
turbulence velocity. This is quite unlike solutions of the linearized equations 
examined in hydrodynamic stability theory, where the time and space variations are 
decoupled and eigensolutions are calculated of the form 

u ( x ,  t )  ocflx) eiat, (3.28) 

84 aa 
axi axi 
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where u is a constant across the flow. The RDT solutions for inhomogeneous 
rotational straining motions are difficult to obtain analytically (for all wavenumbers) 
because the assumption (3.28) is not made, and because, when 0 $1 0, the equation 
(3.lb) for fluctuating vorticity w also includes extra terms in the velocity, viz. 
( i 2 . V ) ~  and - ( u , V ) 8 .  

Interesting solutions have been obtained for inhomogeneous turbulence in various 
kinds of unidirectional shear flows. In  the first case, consider a uniform shear flow U 
over a rigid flat boundary parallel to the mean flow, where 

u= (U0+ax,,O,0), 5, > 0, ( 3 . 2 9 ~ )  

the turbulent vorticity o,, is initially homogeneous a t  t = 0, and there is no motion 
across the boundary, so 

u,=O on x,=O, t > O  (3.29 b )  

(Maxey 1978; Lee & Hunt 1989). In  a uniform shear the equations yield an explicit 

(3.30) 

Therefore a solution can be constructed in the form 

u2 = U:H)(X, t )  + a$/ax,, (3.31a) 

where uiH) is a homogeneous solution such that 

V2uiH) = V2uiH)(x, t = 0) and Vz# = 0. (3.31 b. r )  

Thence using (3.18) and (3.31) the ‘transfer function’ for up can be expressed as 

( 3 . 3 2 ~ )  

where 
x = ( ~ 1 ,  ~ 2 - 0 1 ~ 2 ,  ~ 3 1 ,  IC13 = ( ~ l r  0, ~ 3 ) ;  A z n , ( ~ ,  t )  = ( k 2 / I ~ I 2 ) A , n ( ~ :  t = 0) 

(3.32 b-(I) 

and a2#,/ax;-IK,,12$, = 0, subject to a$,/ax, = A,, on X, = 0. (3.32e) 

From (3.21)-(3.23) I7,, Q I n  and &3n can be calculated from Q,,. When a = 0 this 
is the solution for rapid changes in a turbulent flow when it rigid surface or ‘wall’ is 
introduced into the flow, and is valid over a period 0 < t < TL (see figure 3). Note that 
the solutions for ul, u,, u, (and their statistics) do not change over this timescale. 
The analysis can be generalized to  allow for viscosity near the wall so that a no-slip 
boundary condition on the fluctuating velocity could be applied (Hunt & Graham 
1978). The theoretical calculations for variances and spectra of different velocity 
components were compared with the laboratory experiments (that approximately 
correspond to the theoretical assumptions) of grid turbulence over a moving ‘wall ’ 
by Uzkan & Reynolds (1967) (at  low Reynolds number) and by Thomas & Hancock 
(1977) (at high Reynolds number). The different variations of the different 
components near the wall were well predicted, and good quantitative comparison 
was found for the normal components, even though the criterion ( 3 . 7 ~ )  for the RDT 
solution was not strictly satisfied. In  fact, T, - TL (Hunt 1984). 

When a + 0, all the velocity components (and the wavenumber component x,) in 
the shear flow change. A correlation (-=) develops for the u1 and u,components 
and energy is transferred to the streamwise component u,. The ratio of ui(x,) near the 
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x2 
uo . 

- Is a@ Viscous layer - / 
Eddy Lo 

Lo U,/u, - small changes in turbulence structure 

L c 

Rapidly changing turbulent flow 

FIGURE 3. A rapidly changing turbulent flow for a rigid surface introduced into a flow. L, and 
Lo are the lengthscales of the inhomogeneous layer (g ) ,  and of incident turbulence (8). 

- UI UP k (growing with time) 

FIGURE 4. Interface between turbulence in a flow with uniform mean velocity and a shear flow 
that is initially non-turbulent. 

wall compared with its value far from the wall is only slightly changed by shear 
(typically reduced by 20% for at % 4). In  both cases a t  high Reynolds number, 
with or without a finite shear rate, it is found that 2 K $xi, if the high-wavenumber 
form of the energy spectrum E(k)  far from the boundary has the form E(k)  a egk-i. 

Other solutions of inhomogeneous turbulence in shear flows have been obtained 
where the shear (a) changes at some plane, x2 = constant. For example, consider a 
uniform velocity above a uniform shear (figure 4) 

U =  (U,,O,O) for 0 < x 2 ,  (3 .33a)  

U =  (U,,+olz2,0,0) for x2 < 0, (3 .33b)  

and assume initially ( t  < 0) that the turbulence u,(x, t )  is confined to the upper region 
0 < x2. The solution for u1 in terms of u,(x, t )  obtained from (3.30), (3 .31) ,  and from 
additional constraints that  u2 and the pressure p are continuous across the surface 
at x2 = 0, where the mean vorticity has a discontinuity (Gartshore et al. 1983). 

At t = 0 the vorticity field in the upper region induces an irrotational fluctuating 
velocity field in the mean shear region (x2  < 0) (Phillips 1955), and it decreases 
rapidly with 1x21, i.e. 2 K ( I X J / L ~ ) - ~ .  As time increases, the mean shear leads to  the 
shear stress growing in this layer, and the amplification of the components ul,  
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u3, which can be computed from (3.32), (3.22). Note that the fluctuating pressure, 
which acts to reduce --- in the shear layer, also acts to produce a negative value 
of -= in the upper layer, because the pressure is continuous across x2 = 0. (This 
important effect is not reproduced in current models of turbulent Reynolds stress or 
pressure strain rate, based on the local value of mean strain rate.) These idealized 
(but rational) methods have potential for further development to  gain understanding 
of several important problems, such as complex interface regions a t  the edges of 
shear layers, when effects such as stratification, compressibility and rotation are 
important. 

4. Some effects of shear and boundaries on the structure of turbulence 
I n  this section we consider in detail the solutions of RDT for turbulence in uniform 

shear and near boundaries, and review the relevance of these solutions to 
understanding slowly changing turbulent shear flows. 

4.1. specifying the uniform shear problem 

Consider a uniform shear flow U =  (ax,,O,O) rapidly distorting, over a period 
to < t < t , ,  a homogeneous turbulent velocity field u whose initial energy spectrum 
a t  t = to is Eo(k) .  For homogeneous distorted turbulence, the velocity transfer 
functions are as defined in (3.16) : Qin(~, x, t )  = A,,(x, t )  eiX.x, where (from ( 3 . 1 6 ~ ) )  
the changing wavenumber is 

(4.1) 

and p = at. Townsend (1970) derived the analytical solutions for the components of 
the amplitude function, A, ,  : 

x = ( K l ,  K z - P K 1 ,  K 3 ) >  

KZ - P K I  k2 K i  

- - k:3 - K 1  [tan-' ( 5, k13 -tan-' (-)I} k13 
A 22( k ,  to) ,  ( 4 . 2 ~ )  

(4.26) 

( 4 . 2 ~ )  

where k is the wavenumber a t  t = 0 and k:, = K: + K: .  

Note that these expressions are independent of the magnitude of the wavenumber 
k, which is a special feature of homogeneous distortions ! 

The three-dimensional energy spectrum tensor @,(x, t )  of the distorted turbulence 
is determined by its initial value @ O n m ( ~ ,  t = 0) and by A,,(x(K, t ) ,  t )  from (3.17). The 
covariances uiuj are obtained by integrating over all wavenumber space x or K. 
The initial spectrum @o,m(~) is characterized by the isotropy of the variances of the 
components of turbulent velocity, i.e. 
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and of their distribution in wavenumber space, e.g. 

IK ( K i  K j / k 2 )  FO,, d X / l  ~ o l l  dx 

(cf. Kida & Hunt 1989), and by the distribution of turbulent energy over different 
scales, i.e. 

(4.3a) Eo(k) = I @OZl(X) W x )  
1KI-k 

(Batchelor 1953). In  some cases the distribution of Oot,(x) over shells in wavenumber 
space is the same for all k ,  then 

@o&) = 6 0 ~ , ( G ) ~ * ( k ) ,  (4.3 b) 

where R = rc/k and 

Since Ain is independent of k,  the integral of (4.3) for the covariance Uiuj can be 
written as 

6oij dG = 1. 

UiUt = IOW (JK,-*A:"dlm @on&) U ( x )  1 dk. 

m(t) = -I Ai*,(R)A,,(R) 6onm(ii) dR. 

(4.4) 

If @oij(x) has the same form for all k, using expressions for A ,  normalized by k, (4.4) 
reduces to 

(4.5) 
1Kl-k 

4.2. Covariances 
Results for ~ t ~ j r  have been obtained for two cases where the turbulence is initially 
isotropic or initially axisymmetric about the streamwise direction xl, and QOi, is 
given by ( 3 . 1 4 ~ )  or (3.15) (Maxey 1982). 

For a small time after the shear has been applied (P < l ) ,  At,  can be expanded in 
powers of /3 and the integral (4.5) can be calculated analytically, leading to 

( 4 . 6 ~ )  

(4.6b) 

( 4 . 6 ~ )  

(4.6d) 

-- -- 
where R = ui/ui(t = 0) = ui/ui(t = 0). The terms underlined show how $ and 
- ulup increase solely because of horizontal momentum changes caused by vertical 
motion of fluid elements (i.e. by the term u2aU1/ax:, in the momentum equations) 
or by bending and stretching of the mean vorticity (i.e. the term Q3au2/ax3, 
52, au,/ax, z Q, au2/ax2 in the vorticity equations). These terms dominate if eddies 
are elongated in the streamline direction (Landahl 1984). Note how these changes 
just depend on the vertical turbulence 2. The other terms contributing to the change 
in can be also considered as corrections associated with the spheroidal shape 
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of eddies (Landahl 1984; Auton, Hunt & Prud’homme 1988) (i.e. the pressure 
gradient terms in the momentum equation) or the rotation and stretching by the 
mean flow of the fluctuating velocity (i.e. (w.V) Uin the vorticity equation). These 
corrections depend on the anisotropy of the variances of the components of the 
initial turbulence and their distribution wavenumber space. So it is not surprising 
that approximate models of turbulence differ from each other and from the above 
results (which are only strictly valid for small times). 

When the strain is finite (p  2 l),  evaluating the integral (4.5) requires computation. 
It is found that the way that q changes with small strain continues with larger 
strain, i.e. 2 and 2 increase without limit, --% increases to  a limiting value, 
- and 2 continues to decrease. For large strain when p + 1,G K p, a l n p  and 
u: K (lnP)/P (Rogers 1990). The Reynolds shear stress - is simply related to from 
the kinetic energy equation. Since --f z, --- + u?/2p-t constant as p + 00. 

The initial state of the turbulence does not effectively change the relative orders of 
magnitude of the moments but i t  does change their actual values. For isotropic 
turbulence pI2 x 0.6, when ,8 x 2, but for anisotropic axisymmetric turbulence, p l z  
is reduced. For R = 2, plz = 0.4 (Maxey 1982). 

Suitable parameters for defining the distortion of different flows are the second 
invariants 11, = -ibij  bji and 11, = -+Kj Yi of the anisotropy tensor of the moments 
of velocity b,, = ~ / ~ - & , ,  and of vorticity Fj = ~ / ~ - $ 3 ~ j  (Lumley 
1978). As the shear strain p increases to  2, for initially anisotropic turbulence, -IT, 
increases from 0 to 0.05 ; whereas for initially axisymmetric turbulence - 11, 
increases less, from 0.02 to 0.03. Even when /3 = 10, -11, = 0.2 and - 11, = 0.05, 
which are about two-thirds of their limiting values of 0.33 and 0.083 (Lee et al. 1988). 
The explanation is that, when /3 % 1, u: 9 ui, ui and w i ,  wi  + w:. 

4.3. Comparison with nonlinear computations and experiments 
The RDT results can be compared with exact direct numerical simulations (DNS) of 
the viscous nonlinear Navier-Stokes equations, and, unlike comparisons with 
experiments, these can be defined rather precisely with exactly the same initial 
conditions. 

We recall the argument of $3  that the linear RDT theory should give a good 
approximation to the most amplified components of turbulence over an arbitrary 
straining time (i.e. T, > TL), if the linear strain rate is large compared with the 
nonlinear strain rate (i.e. Y *  = (dUl/dz2)L,.u, b 1). But the components of 
turbulence that are diminished (in physical or wavenumber space) are likely to be 
poorly modelled by RDT. 

Lee et al. (1988) compared the inviscid RDT solutions of isotropic turbulence in 
homogeneous shear with the results of DNS where the initial state of turbulence was 
fully developed homogeneous turbulence with a Reynolds number Re, of about 40. 
The results for the anisotropy defined by the second invariant I1 (figure 5 )  show that 
in this case, the linear solution closely approximates to the exact result. This is to be 
expected since Y * is much greater than unity ; in fact Y * x 10. 

Note that the linear solution slightly underestimates the anisotropy. This 
contradicts the usual assumption that the nonlinear straining (ignored in linear 
theory) always reduces anisotropy (see $3.1). 

We have seen that for turbulence in homogeneous shear, the Reynolds stress 
coefficient pI2 = --/(a); for homogeneous shear decreases quite markedly if 
the initial anisotropy (R = u?/u?J increases. This is an alternative explanation for 
why the value of plz is greater than the experimental value, when the initial 
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FIGURE - - -  5. Comparison of anisotropy in homogeneous turbulent _ -  shear flow of the velocity variances 
(where u; > u! + u!) and the vorticity variances (where ui, u: + 4), as calculated by DKS and 
RDT. The anisotropy is defined by the second invariants TI,, TI,. DKS : 0, -11, ; 0, -II,,,. RI)T : 
-, 11,; ---, 11,. (From Lee et al. 1988.) 

turbulence is isotropic, which differs from that of Jeandel et al. (1978) and Townsend 
(1976), who assumed that the small-scale dissipation of turbulent energy reduced plz ,  
because this dissipation has a stronger effect on -- than on 2. At this stage it 
is not clear which mechanism is most significant. 

4.4. Spectra 

To investigate how the spatial structure of the turbulence changes with shear, 'two- 
point ' spectra can he calculated using (4.2) and (4.3). We are particularly interested 
in the form of the spectra a t  high wavenumber to see whether there are any universal 
features of the small-scale turbulence in shear flow. 

It is instructive to express the spectra in terms of the local wavenumber x .  In a 
shear flow after a finite distortion the spherical surface of x = constant in 
wavenumber space corresponds to  a surface 

x2 = K; + ( K ~  - K~ /3)2 + K:, (4.7) 

which in K-space is a spheroid flattened in the K~ direction, rotated and elongated in 
the direction K~ = K ,  /I. 

After some algebra, the components Ei i (x )  of the energy spectrum E ( x )  are found 
to have the forms 

(4 .86)  
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where K2 - P K l  tan-l - -tan-l ~ 

a="i[  K1 k12 ( k,, )] 
and b = PK:(k2-2K~+PK1K3)/k2X2. 

Also k2 = x: + (xz +Pxl),+ 2; = x2[cos2 B + (sin 8 cos q5 +P cos 8),+ sin2 0 sin2 $1 
and dA(k) = k2sin8dBdq5, 

where x = 1x1. The form of E,(k) has to be broadly specified in order to obtain 
asymptotic results for E(2) when x % L-l and P 9 1 .  Over the sphere in x 
wavenumber space on which x is constant and large, defined by (4.7), (K( is very small 
and K~ - x/P,  K, - x and K, < x. Since E,(k) decreases with k when kL, % 1, it follows 
that when 1, the integral is determined by the distribution of the large-scale 
energy of the initial turbulence. 

If the initial turbulence consists of isolated volumes of flow such as vortex rings 
with dimension L,, which are separated by a distance of L,, then 

E,(k) cc k2 when L;l + k < Lil.  (4.9) 

But if the initial turbulence consists of vortex tubes with diameter of order L, and 
lengths of order L, (e.g. the vortex ring diameter) 

E, (k )  cc kn when Li l  < k < L;l 

E,(k) cc k2 when k < L;l. 

(4.10a) 

(4.10 b)  

Inspection and kinematical analysis of the turbulent flows computed using DNS (at 
Re, < 100) indicate that the 'tangled-vortex tube' model is a good description of the 
flow structure, for a broad class of sheared and unsheared flows (e.g. Wray & Hunt 
1989; Adrian & Moin 1989). For sufficiently large scales (k 4 L;l) there is some 
evidence from computation (Lesieur 1987) that  E,(k)  cc k4 (as derived by Batchelor 
& Proudman 1956). But Saffman (1967) gave a counter example of turbulence where 
E,(k) cc k2,  as k + O .  

The spectra for the small scales of turbulent flows appear to be highly dependent 
on the Reynolds number (e.g. Re,) of the turbulence and on the mean velocity 
distribution. For fully developed turbulence generated by grids in wind tunnels, or 
obtained by DNS, without mean shear (where Re, < 300) the spectra decrease 
rapidly with k,  typically E(k) cc e-lcZLz at  the lowest values of Re, (Champagne, Harris 
& Corrsin 1970; Rogallo 1981), and E ( k )  cc k-RH, where nH 2 2 ,  a t  the higher values 
of Re,). However, in shear flows, even a t  these ranges of Re,, it is quite usual to find 
that E,(k) decays algebraically, i.e. E,(k) cc k-" when -: < n < 2 - over a significant 
range. In typical wind-tunnel boundary layers, the small-scale spectrum changes 
from exponential decay in the outer region to algebraic decay ( k P )  near the surface 
(Bradshaw 1967). For example, Ho & Huerre (1984) find that in a mixing layer n lies 
in this range just after about three 'pairings' of the large vortices in the shear layer, 
beyond which point the turbulence has a complex three-dimensional structure. 
Rogallo (1981) found n+ 2 in his computations of turbulence in a homogeneous shear 
flow which extended to  = 18 but Rogers & Moin (1987) found that n x 3 for 
P = 8. In Champagne et aZ.'s (1970) wind-tunnel measurements they found that 
n = 2 ,  even for quite small strain (see figure 6). Wherever the Reynolds number 
is high enough, such as in atmospheric or oceanic turbulent flows (Re, 2 lo4), the 
small-scale structure of shear flows is described by the Kolmogorov inertial range 
theory, with n = 5,  
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Although in these model computations we focus on the spectra where xL, % 1, we 
have to define the initial spectra over a wide range of wavenumber. We consider the 
two forms 

Eo(k) = u; L(kL)N exp ( - k2L2) where N is integer and N 2 0, (4.11 a )  

u; L 
and E O ( k )  = (1 + (kLJ2)P' where 1 < P. (4 .11b)  

The form of E ( x )  when /3 % 1 can be derived by asymptotic analysis of the integrals 
in (4.8). In  the range 1 4 XL 4 /3 an examination of the terms shows that these are 
dominated by Ell, so that  el,(^) x E(x )  and 

1 P2Eo(k(X)L) M(4 
(4.12) 

The integrals are dominat$d by a narrow region in wavenumber space, defined by 
16'1 4 1 and 191 4 1, where 6' = 

k2 
E(X) K X-ConSt 

+ (lip) - (6'//3). Therefore, when /3 B 1, 

Thus for the range 1 4 xL 4 /3, if Eo(k)  = o(k-') when kL % 1,  

E ( x )  oc /3( r iEo(L) di)/X2L2. 
0 

(4.13) 

So whatever the initial spectrum, provided it decreases faster than k P 2 ,  for large 
enough strain, over an increasing range of wavenumber, the energy spectrum tends 

Efx) w2. (4.14) 
to the limiting form of 

This result holds for broader classes of spectra than those specified in (4.11). 
However if the initial spectrum decreases slower than k-' as k increases, the 

integral sr i E ( i )  d i  does not converge, even though the integrand is sttill dominat,ed 
by the narrow region of wavenumber space where 

K1 6 L-'//3, K 2  ff /3L-', K3 ff L-'. 

Thus for turbulence a t  very high Reynolds number, where there is a -$ spectrum, 
the effect of shear is to maintain a - C  spectrum, which has been well established in 
many field experiments (e.g. see Monin & Yaglom 1971 ; Wyngaard & Cote 1972). 

Computations of E&) for the streamwise and vertical velocity components are 
displayed in figure 7 (for the simple spectrum E ( k )  cc exp ( - k 2 L 2 ) ) .  These show a 
tendency to the x-2 spectrum, for the streamwise component and x-4 for the vertical 
component ( x 2 )  when the initial spectrum decays faster than k P 2 .  

It is also instructive to compute the one-dimensional spectra O,,(xl)  in different 
directions to show the anisotropy of the turbulent structure. Also, these are the 
spectra that are usually measured. Figure 8 (a%) shows that the one-dimensional 
spectra of Oll(x2) in the direction xz vertically across the flow demonstrate x i 2  
spectra ; but for wavenumbers parallel to the flow the Oll(xl)  spectrum is proportional 
to e-(XIL)*, if Eo(k) cc e-IcZLe. But if the axes for defining spectra (indicated by a prime) 
are rotated slightly a t  an angle 8' from the flow direction, so that, x1 becomes xi, then 
@;,(xi) a xi-2. (The same forms are found for different initial spectra as defined in 
(4.11).) (These variations in Ol1(xr)  for different xi are smeared out by the effects of 
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large-scale turbulence randomly rotating the vorticity of small-scale eddies when 
T9 2 TL (Kida & Hunt 1989).) 

There is a simple physical explanation of these spectra which are only found where 
vortex sheets exist (on a scale much less than 2-l). In this case, the ‘vortex sheets’ 
are high localized gradients aul/ax2, aul/i3x,, which surround long, narrow regions or 
‘streaks ’, where the streamwise fluctuations are positive or negative. These 
phenomena have been seen in direct numerical simulation of individual flow 
realizations, and in experiments (Lee et al. 1988). Similar structures were observed by 
representing a set of realizations of the flow field as 

u&, t )  = A,,(x, t)ei(X.Kn)S071(KR), 

where So, is randomly distributed (subject to its variance being proportional to the 
spectrum) and where the deterministic velocity transfer function A,,  is given by 
RDT (figure 9) (Carruthers, Fung & Hunt 1989). 

The essential result of the linear theory is to show that the form of the high- 
wavenumber spectra in most turbulent shear flows is largely determined by the linear 
distortion effects of the mean shear rather than by nonlinear interactions, and khat 

n-space 
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I 

X +  

X+ 
FIQURE 6. Changes in the energy spectra caused by shear. (a) Schematic diagram (i) before shear, 
(ii) after shear. ( b )  One-dimensional spectrum measured by Champagne et al. (1970) in shear flow 
at two positions downstream. 0, z,/h = 10.5; 0, zJh  = 8.50; h is the height of the wind tunnel, 
Zkd is the Kolmogorov microscale. (c) Direct numerical simulations of Rogallo (1981) of homogeneous 
turbulence in uniform shear (Re, sz 80). ( i )  E ( x ) .  E&); (ii) x*E(,y). x2Eii(x) .  

the algebraic form of these spectra is consistent with the existence of discontinuities 
in velocity or velocity gradients on the scale of LIP. 

5. Discussion and tentative conclusions 
In this review we have described some developments in the techniques of RDT and 

in the general understanding of how it can be used; in particular that the theory 
provides a rational basis for analysing ‘rapidly changing turbulent flows ’ (RCT), and 
a heuristic method for estimating certain features of ‘slowly changing turbulent 
flows’ (SCT). 

5.1. RDT ‘Statistical eigensolutions ’ 
There are certain features of turbulent flow structure predicted in which moments of 
certain components of the turbulent velocity reach a steady state, or change very 
slowly, even when the turbulence is being rapidly distorted. These are ‘eigen- 
solutions’, in the sense that,, if the initial turbulence was specified to have these 
forms, the particular statistical features of the turbulence would change little under 
the action of the distortion (provided it was rapid). In the first case, of inhomogeneous 
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7 .  RDT calculations of E,,(x)  for increasing shear rate /3. The initial 
E,(k) = .u;J1e-(r2LZ). (a )  E , , ( x ) ;  ( b )  E&). 

spectrum is 

turbulence near a rigid surface, xz = 0, with or without mean shear, these features are 
moments such as u,(xk) uz(xz)/u~(x2), u,(x’,) u,(z,)/(u: u$, and other components. 
These correlations depend weakly on the initial anisotropy and the form of the 
energy spectra. 

In the second case, of locally homogeneous turbulence in a uniform shear, these 
features include the shear-stress cross-correlation coefficient 

PlZ = -U1(Z1)  U Z ( X Z ) / ( G  414 
which changes very slowly ( K ln-ip, for /3 9 1)  and the structure function, which, for 
a wide class of flows, becomes proportional t o  the spacing, Irl, when it is much less 
than the largest scales and much greater than the scales controlled by viscosity, i.e. 

(ui(x)-ui(x+r))2 = BJrJ. (5.1) 
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FIQTJRE ,8, O,,(x,) calculated by RDT in uniformly sheared flow. The initial spectrum is E,(k)  = 
U , L ~ - ( ~  ).  (a )  elI(xl); ( b )  8,,(xz); ( c )  O;,(x;). The axes for defining the spectrum are rotated by 
an angle 8' (in ther xl, X1-plane) from the flow direction. 

(This is equivalent to the energy spectra E(2)  becoming proportional to x-2 over a 
range of x, when p % 1 .) The proportionality factor B( -pu; Lo with dimensions LTP2) 
increases with time, with the shear dUJdx,, and with the initial kinetic energy 
of the turbulence u;, but inversely with the initial lengthscale Lo (defined by 
S:k-lE(k) dklu;). In  this case the shear-stress cross-correlation coefficient depends on 
the anisotropy of the initial spectrum, but not the form of the spectrum, whereas the 
form of the structure function and the energy spectra (over a given range of (r(  and 



526 J .  C. R. Hunt and D. J .  Carruthers 

0 2 4 6 8 
XI 

0 2 4 6 8 
XI 

FIGURE 9. Realizations of homogeneous turbulence as shown by contour lines of u1 in the (zlr z3)- 
plane. (a) Isotropic turbulence, E,  = L3u:k* e-kaLa. ( b )  After a rapid distortion. /I = at = 11.7. 
(9’ * = aL/uo = 40.) Note the sharp gradients in the x3 direction (consistent with E a x-*)  and the 
elongated contours in the z1 direction (consistent with figure 8a, c ) .  

x) tends to become independent of the initial turbulence, provided that in the initial 
spectra E,(k)  = ~ ( k - ’ )  when k > L-l. 

5.2.  Extrapolation of results to slowly changing turbulence 
The nonlinear processes in a turbulent flow can only be estimated and modelled 
approximately; but i t  is clear that they affect the energy and anisotropy of the 
turbulence on a timescale Llu,. So, if the turbulence is distorted significantly on this 
timescale by a linear process (i.e. Y *  9 l),  the effect of the nonlinear terms is 
approximately equivalent to a continual change in the initial conditions of RDT 
calculations. Therefore if certain results of the RDT calculation (the ‘ statistical 
eigensolutions ’) are not only changing slowly with time, but are approximately 
independent of the anisotropy and energy spectrum of the initial turbulence, the 
form of these RDT solutions also approximately describes turbulent flows that 
persist over many timescales, i.e. slowly changing turbulent flows, such as shear flows 
and flows bounded by a rigid surface (Hunt 1984) or density interface (Carruthers & 
Hunt 1986). The numerical values of the coefficients, such as p l z ,  of these 
‘eigensolutions ’, depend on the initial anisotropy, and consequently different 
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coefficients can be expected in different turbulent flows with different initial and 
boundary conditions. 

This is essentially the argument for using the results of RDT to provide new 
insights and practical models for many kinds of SCT. 

More complete models of SCT require modelling and understanding the effects of 
the nonlinear processes, one aspect of which is the random mean distortion of small- 
scale turbulence by large scales, and the transfer of energy between the scales. Over 
short periods, this is a problem of RDT with a random distortion tensor aij. Using 
this method, Kida & Hunt (1989) found that the qualitative effects of interaction 
between the scales in the presence of mean strain are not, in general, the same as in 
the absence of mean strain ; for example the tendency of these interactions to make 
the turbulence more isotropic may be weaker. Consequently, in slowly changing 
turbulent flows, the nonlinear processes cannot be assumed to have a strong 
tendency of returning the turbulence to isotropy. This is another reason why it  is not 
necessarily valid to assume that the appropriate initial condition for RDT 
computations for SCT is that  the turbulence is isotropic. 

5.3. The  structure of shear flows : some new insights f r o m  RDT 
Another way of understanding the generation of the different components of 
turbulent shear stresses and pressure gradients is to study the dynamics in individual 
eddies. The form of these energy-containing eddies can be derived from the two-point 
cross-correlations (Townsend 1970, 1976), or from inspection of the different 
computed realizations of the flow field (e.g. Lee et al. 1988). (These may not be the 
largest eddies spanning the whole flow.) The structure predicted by RDT (given the 
appropriate value of the mean strain, p) agrees well with the measurements. 

This predicted structure, with its significant streamwise and antistreamwise 
vorticity (‘ double-roller eddies ’), and localized regions of intensified transverse 
vorticity and intense streamwise velocity (or streaks), is therefore different to  the 
structure of the linear eigenmodes of the mean velocity profile predicted by 
hydrodynamic stability theory. The corollary is that if the results of RDT are to be 
used for estimating Reynolds stress or pressure gradients etc., then they are only 
valid where the eddy structure has a similar form to that predicted by RDT. 
Therefore the use in fully developed turbulent shear flows of turbulence models (such 
as that of Launder, Reece & Rodi 1975 or Lumley 1978) in which the forms of the 
cross-correlations of velocity and pressure gradient are the same as those predicted 
by RDT implies that the structure of the energy-containing eddies is similar to that 
of three-dimensional turbulence in homogeneous shear. Experimental studies of free- 
shear layers have shown that this kind of eddy structure occurs in the ‘later’ or ‘far 
downstream ’ stage of free-shear layers, while in the ‘early’ stages the eddy structure 
is similar to the eigenmodes. (This transition is very clear in computations and 
measurements of wakes; Lesieur & MBtais 1989; Mumford 1982.) This suggests that 
knowing the eddy structure of turbulence, perhaps by flow visualization, indicates 
where models based on three-dimensional turbulence in local straining flows (such as 
RDT or ‘closure models’) are likely to  be valid. (So one would not expect such local 
turbulence models to describe satisfactorily the turbulence in the near wakes of bluff 
obstacles in cross-streams ; Murakami & Mochida 1988.) 

The asymptotic result from RDT about the form of the energy spectrum of 
turbulence in uniform shear flow, given by (4.14), has a number of general 
implications about the interpretation of computations and measurements and about 
the generality of models of turbulent shear flows. 
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If the Reynolds number of turbulence is too low for the smallest scales to be 
independent of the largest scales (which in practice means that Re,, 6 lo3), then the 
energy spectrum cannot have an inertial subrange. In  the presence of shear, RDT 
theory and the hypothesis of 54.4 suggests that, even for slowly changing turbulent 
flows, the small-scale spectrum tends to a form where E ( k )  cc k-2 ,  whatever the initial 
form of the spectrum of turbulence. The ‘initial’ form may result from nonlinear 
three-dimensional instabilities in free-shear flows or Orr-Sommerfeld instabilities in 
wall layers, but the important point is that, under the action of linear processes, the 
small-scale turbulence tends to a general form. 

It has already been remarked in $4.4 that  there have been many experiments a t  
low-to-moderate Reynolds number Re,, < 200, where spectra (either energy or one- 
dimensional) approximate to this form. 

The major implications of the spectra of low-Reynolds-number turbulence 
changing to this form are that 

(i)  the strain rates of the small scales become comparable with large scales, so that 
energy production a t  small scales becomes significant (e.g. vortex streets becoming 
unstable or small-scale production associated with longitudinal vortices). Pre- 
sumably, therefore, the presence of shear can stimulate the nonlinear cascade of 
energy. Indeed, one form might be a repetition of the vortex sheet and ‘streak’ 
structure within the vortex sheets formed by the linear distortion ; 

(ii) from (5.1), the mean shear determines the magnitude of the smallest scales of 
motion, which are controlled by viscous stresses and defined by velocity and length 
scales u,, l,,. Since u,l,/v - 1 ,  it  follows that 

l,, - v$/& L/l ,  - (Lu,/v)$/$. (5 .2)  

Therefore the ratio of the largest-to-smallest scales increases as the strain ratio 
increases, but does not increase quite as rapidly with (Zu,/v) as in very high- 
Reynolds-number turbulence, where 

(L/l,) (Lu,lv)f;  (5.3) 

(iii) the dissipation rate E = v s :  k2E(k) dk is largely determined by the k-‘ 
spectrum, even though for this region the dominant dynamics are inviscid. Using 
(4.13) it follows that 

E - v l ”  k2E(k)  dk - v;&. (5.4) 

Since BccPuZIL, and /3 = tdUJdx,, it  follows that, in the RDT limit, B is 
determined by the shear, and only reaches a steady value if the small-scale energy 
spectrum also reaches a steady state (i.e. B is constant). 

At low or moderate Reynolds numbers without shear, where E ( k )  = o(kP2) ,  
the dissipation rate is determined by the large scales (typically AIL 6 +, where 
B - vu i /A2) ,  and consequently the ratio of AIL or EU:/L is sensitive to Reynolds 
number and the form of the spectrum. However, in the presence of shear, even a t  
moderate Reynolds number, this theory shows that the dissipation is determined 
by smaller scales, which have a general form that is less sensitive to the detailed 
form of the large-scale spectrum, and the ratio eu:/L varies slowly (CC (v/Lu,)f) 
with Reynolds number. 

This reasoning suggests why formulae and models for the rate of dissipation, which 
are ostensibly based on the concepts of very high-Reynolds-number turbulence, are 
approximately applicable in shear flows a t  moderate Reynolds number. 
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